34 research outputs found

    Proof Explanation in the DR-DEVICE System

    Get PDF
    Trust is a vital feature for Semantic Web: If users (humans and agents) are to use and integrate system answers, they must trust them. Thus, systems should be able to explain their actions, sources, and beliefs, and this issue is the topic of the proof layer in the design of the Semantic Web. This paper presents the design and implementation of a system for proof explanation on the Semantic Web, based on defeasible reasoning. The basis of this work is the DR-DEVICE system that is extended to handle proofs. A critical aspect is the representation of proofs in an XML language, which is achieved by a RuleML language extension

    SweetProlog: A System to Integrate Ontologies and Rules

    No full text

    Logic Programming in Knowledge Domains

    No full text

    Description Logic Reasoning in Prolog

    No full text

    ContractLog: An Approach to Rule Based Monitoring and Execution of Service Level Agreements

    No full text

    Translating Description Logic Queries to Prolog

    No full text

    Prolog Based Description Logic Reasoning

    No full text

    DR-DEVICE: A defeasible logic system for the Semantic Web

    No full text
    Abstract. This paper presents DR-DEVICE, a system for defeasible reasoning on the Web. Defeasible reasoning is a rule-based approach for efficient reasoning with incomplete and inconsistent information. Such reasoning is, among others, useful for ontology integration, where conflicting information arises naturally; and for the modeling of business rules and policies, where rules with exceptions are often used. In this paper we describe these scenarios in more detail along with the implementation of the DR-DEVICE system, which is capable of reasoning about RDF data over multiple Web sources using defeasible logic rules. The system is implemented on top of CLIPS production rule system and builds upon R-DEVICE, an earlier deductive rule system over RDF data that also supports derived attribute and aggregate attribute rules. Rules can be expressed either in a native CLIPS-like language, or in an extension of the OO-RuleML syntax. The operational semantics of defeasible logic are implemented through compilation into the generic rule language of R-DEVICE. The paper includes a use case of a semantic web broker that reasons defeasibly about renting apartments based on buyer's requirements (expressed RuleML defeasible logic rules) and seller's advertisements (expressed in RDF). 1

    A System for Nonmonotonic Rules on the Web

    No full text
    Defeasible reasoning is a rule-based approach for efficient reasoning with incomplete and inconsistent information. Such reasoning is, among others, useful for ontology integration, where conflicting information arises naturally; and for the modeling of business rules and policies, where rules with exceptions are often used. This paper describes these scenarios in more detail, and reports on the implementation of a system for defeasible reasoning on the Web. The system (a) is syntactically compatible with RuleML; (b) features strict and defeasible rules and priorities; (c) is based on a translation to logic programming with declarative semantics; and (d) is flexible and adaptable to different intuitions within defeasible reasoning
    corecore